US009323615B2

a2 United States Patent 10) Patent No.: US 9,323,615 B2
Cypher et al. @45) Date of Patent: Apr. 26, 2016
(54) EFFICIENT DATA READS FROM 2008/0222480 Al* 9/2008 Huangetal. oo 714/752
2011/0078277 Al 3/2011 Baptist
DISTRIBUTED STORAGE SYSTEMS 2011/0225453 Al* 9/2011 Spryetal.ccccoevneee. 714/15
. R 2012/0284229 Al* 112012 Kimetal. 707/634
(71) Applicant: Google Inc., Mountain View, CA (US) 2012/0290878 Al* 11/2012 Gladwin etal.cc..... 714/20
2013/0275776 Al 10/2013 Baptist et al.
(72) Inventors: Robert Cypher, Saratoga, CA (US); 2015/0095136 A1* 4/2015 Jalalietal. 705/14.41
Sean Quinlan, Palo Alto, CA (US);
Steven Robert Schirripa, Hazlet, NJ FOREIGN PATENT DOCUMENTS
(US); Lid‘fr .Carmij New York, NY WO WO0-2012147087 Al 11/2012
(US); Christian Eric Schrock, Cold
Spring Harbor, NY (US) OTHER PUBLICATIONS
. . - International Search Report and Written Opinion for related PCT
(73) Assignee: Google Inc., Mountain View, CA (US) Application No. PCT/US2015/012599 dated Mar. 31, 2015.
. CC. Huang, M. Chen, and J. Li, “Pyramid Codes: Schemes to Trade
(*) Notice: SUbJeCt, to any disclaimer, > the term of this Space for Access Effciency in Reliable Data Storage Systems,”Proc.
patent is extended or adjusted under 35 of IEEE NCA, Cambridge, MA, Jul. 2007.
U.S.C. 154(b) by 137 days.
* cited by examiner
(21) Appl. No.: 14/169,322
Primary Examiner — Yong Choe
(22) Filed: Jan. 31, 2014 (74) Attorney, Agent, or Firm — Honigman Miller Schwartz
and Cohn LLP
(65) Prior Publication Data
US 2015/0220429 A1 Aug. 6, 2015 (57 ABSTRACT
A method of distributing data in a distributed storage system
(51) Int.CL includes receiving a file into non-transitory memory and
GOGF 12/02 (2006.01) dividing the received file into chunks. The chunks are data-
GO6F 11/10 (2006.01) chunks and non-data chunks. The method also includes
(52) US.CL grouping one or more of the data chunks and one or more of
CPC e, GO6F 11/1076 (201301) the non-data chunks in a group. One or more chunks of the
(58) Field of Classification Search group is capable of being reconstructed from other chunks of
CPC .coocvvviivn GO6F 17/30194; GOG6F 11/1076 the group. The method also includes distributing the chunks
USPC et 711/170 of the group to storage devices of the distributed storage
See application file for complete search history. system based on a hierarchy of the distributed storage system.
The hierarchy includes maintenance domains having active
(56) References Cited and inactive states, each storage device associated with a
maintenance domain, the chunks of a group are distributed
U.S. PATENT DOCUMENTS across multiple maintenance domains to maintain the ability
730,611 B2 42011 Huang et al. to reconstruct chunks of the group when a maintenance

domain is in an inactive state.

8,285,686 B2 10/2012 Kesselman
8,341,457 B2 12/2012 Spry et al.
8,615,608 B1 12/2013 Cypher 22 Claims, 22 Drawing Sheets
fmo
1201208 120120 1201200
) G ()
102
Logsitco;’agr?ion i C Transaction AP} N

350

!]

122 - Request
Network 130
Data Cantrol { ™
Partion Curator ".'\/
Data Stora ¢ ‘

Portion

H (Memory Host) (. Memory Host)
1187

;..\/1 06
Memory Host i
118

L L4

bl
110,110a

¥
110,110b

7
110.110n

US 9,323,615 B2

Sheet 1 of 22

Apr. 26,2016

U.S. Patent

Vi 9id

UgLLGLL

qagLi'oLt BOLL'OLL
jommmamaad T L fmsemnnnnans .
8LL A : . : \ 8L
: 180 Aousspy o e x o w o m s s s e owox 1S0H AJOWIBY 1504 ACUWIBI : OO
~ i uowod
20L ™ w w % n@mﬁo“w alelgl
N . ™ uonag
ol ™M —{___doeins 3z i fonuog eleg
el SICAION
_______________________________________ ——
P
p—
0s¢)/f ,,, "y o0 21607
m?\/wA v UONoBsuBal vm“ Sy
gL ,m .m .m . 371
Etle Ca e SIO W m o0
u0zL0Z1 - a0z1'021 - AN AR

US 9,323,615 B2

Sheet 2 of 22

Apr. 26,2016

U.S. Patent

06g
8t

0ol s\y

{S1I05580004

1B N

dil "Old

rlivii aoLt

BGLE
cm/: e0LL 4SiL S Bbll
{

frgln, SHEL

S

EBIG

¢

yGel

N ¥
e A
-) {S)I0858004 {s)iossS8004q | 211 LOLL
v,_,n.. Joalag JBAJEG .A.,Mff/ SIS0
R 718 Kowep
AAAAAAAAAAAAAAAAAAAAAA lllquN
L E
AL
HIOMIBN
............... ww_\m a
{{{{{{{ S
fciclg]
L 4 K ~
£ 3 £ 3D 0%C !
e Juao 82t Loz
,x.: hY 59 ._
; d ¢
00z~ a6z B0zl

U.S. Patent Apr. 26,2016 Sheet 3 of 22 US 9,323,615 B2

122
210 \% Request

4 Curator N
Metadata Ny 549
File E‘v‘iap s 944
310y~ | File Descriptor F1—~1..-300,
3107 { File Descriptor J—1.-300;
3103~ | File Descriptor }1—1.-300,
310, { File Descriptor }~4— 300,

P

Load Map

U.S. Patent

US 9,323,615 B2

Apr. 26,2016 Sheet 4 of 22
- 310 313
'
File Error Corracting Code

3208

3200

320
-

P " "~
f " £ o £
{ Data Data j Data Data
Chunk Chunk Chunk Chunk
. <]
) ™
|30, a0, | a0, 33,)
330nD: 330nD, \ 330nDs 30D
\ S g
AN
S o= o 74
T \ Non-Data Non-Data | | Non-Data
\ Chunk Chunk ! Chunk
\ > > S
330, 330, 330,
\ 330nC 330nC,, 330nC,
- -

honen

o

ovwan saneed

FIG. 3A

Non-Data
Chunk

>
330,
330nCyy

U.S. Patent Apr. 26,2016 Sheet 5 of 22
eed-Solomon
(r310 313
fd
File Raad-Saoiomon Code

/ \
! Data Data i Data Data
ii Chunk Chunk Chunk Chunk
> ~ i 5 >
\ 330, 330, 330, 330,)
‘SBGHDa 330n5, \ 330nD, SBGnDk“miﬁﬁcwf“
AN
e, oo™ o &€
™~ Code Code 1\ Code
\ Chunk Chunk ; Chunk
v 5 5
\ 330, 330, 330,
Q@On&m 330nC§, 330nC,
e ow, oo f

FIG. 3B

US 9,323,615 B2

Code
Chunk

>
330,
330nC,

U.S. Patent

Apr. 26,2016 Sheet 6 of 22
- 310 313
(4‘

US 9,323,615 B2

File

Error Correcting Code

Gy .
I G
~ e &] i
i Data Data | Data Data
i Chunk Chunk {1 Chunk Chunk
gD S0 330,/
, 330, 330, 7 330, 330NDy e’
| 330nDs 300Dz 3B0nDs e
! Code-Check |, Code-Check
“ Chunk |y ° Chunk
i D 5 >
\ 330,330nC, ' 330,330nC, e
So_ . 330nCCy L 330nGCCk_
Word—eck Word_hegk Column-Check- Column-Check-
Chunk Chunck Word-Check Word-Check
N T Chunk Chunk
. ? 7 4 Y
330, 330,))
330nC, 330nC. 330, 330,
330nWC; 330nNW0 330nC, 330nC,
i 330NCCWC, 330nCOWC,

FIG. 3C

US 9,323,615 B2

Sheet 7 of 22

Apr. 26,2016

U.S. Patent

oougee

OUCEE0LE BYUIYD

T A

d¢€ Old

aquice

J.omm ANy

TDOUOEE

9ie

I~

\EETRY

DUOLE'oLE BYMUNLT)

.

~—. Bpo0)

Buipon patsie

9ig

LD

oo

40

mﬁ i . % -

Vi3

e

W\\z.(\

Duipon paisien

US 9,323,615 B2

Sheet 8 of 22

Apr. 26,2016

U.S. Patent

4€ 9id

SYUNU
HOBUD-DIOAN SHUNYS HoBYD-8p0sH
HURYO-BPOD , ‘ , n s «
2101910 §10 1 ¥110 | €40 1210 | 110 | 0710 " U™
oMOouEE e P OOUDEE
ouosg'oee N\ . | e [T OROAEy
200900 | 500 | ¥'00 | 00| 200 | L'00 | 000 OO OEE:
50 | 1v0 | cea | 62a | ez | L0 | La | sa :
vo |ova | vea | eza | zza | oia o | va -9
SUNYY o 160 | eea | zz0 | tza|sia| ea | £ :
308YD-PIoM)
20 |8eqa | zea | 9za {oza | via| sa | za ;
10 | sga | 1ea | sea | ela | era | za |ia jguoes]
OMUDES P e
DUOBEOEE N 00 Joea | 0Ea | ved | 81O Tha | 90 | 00 4y
[SYUNYD BIEQ i
1o X0 RTTT I T N e e Se
pie—

Buipon psishe

U.S. Patent Apr. 26,2016 Sheet 9 of 22

Layered Coding

v

Receive A Block Of Data Chunks

N~ 302

l

Generate Word-Check Chunks Using The
Data Chunks

o 304

l

Generate Code-Check Chunks Using Dats
Chunks in Columns OFf The Block Of Data

~ 368

i

Store The Data Chunks, Code-Check
Chunks, And Word-Check Chunks

. 308

FIG. 3G

US 9,323,615 B2

— 360

U.S. Patent Apr. 26, 2016 Sheet 10 of 22 US 9,323,615 B2

Nested Coding Ve
~J| DO D4t cojctlczl| e fo7
316
|
Data Splittc word Code
Form Churks
Code-
Check-
Chunk
FIG. 3H
lested Coding Vs
C’C“E uuuuuuuuuuuuuuuuuu C}Cn
3, Data Chunks
RR1— bo | D6 | D12 | D18 | D24 | D30 | D36 | C2
N

- 330nD| D1 | D7 | D13 | D12 | D25 | D31 | D37 | C3

DZ D8 | D14 D201 D26 1 D52 | D38} G4

% 3 Word-Check
D3 | D9 | D15 D21 | D27 | D33 | D3] C5 Chunks

316~} D4 | D10 | D16 | D22 | D28 | D34 | D40 | C8

Dﬁ D11 D47 D23 | D29 | D35 {3413 o7

330.330nC, fca,d C0,1 | €02 | C03|CO4|CO5|CO6) 7

330nCC <L N\, 330.330nC,

1.7 330nCOWC

~ o

detolonticizicialcialcisicie Y
R! Rn L i Code-Check-
Word-Check
Code-Check Chunks Chunks

FIG. 3l

US 9,323,615 B2

Sheet 11 of 22

Apr. 26,2016

U.S. Patent

re Old

SHUNUD
SHUNYD 084 D-8pod
AIBUD-PIOM
HIBYD-8POT | . _ . , N e T
SANEOU0SE 7N%e] RuRel K<ieR R arkel RuReR Fat¥ol WANEoR ' EReTl Salitc B=
Juoreone N ‘ ——100u0e
2001900500400 €00| 200 L'00 | 000y DUOEEOLE
10 [wwa | sea | eza fsza | aal La] sa .
90 1ova | vea | 8za | zea | 9ta | 01a | va 1~9E ¢
SHUNYD GO 188Q | ££0 | Zz0 | 120 | 10| 60 | €0)
SOBUD-PIOA :
¥O | 8eq | zeq [eza | 0za | via | 8a | &g .
€0 | z£a | 1ea | sealeia | ca| ca | 1o jquoss .
—r” O
20 | 980 | 050 | ¥2Q | 810 | 2LA | 90 | 00 { e,
| SHUNYZ) BIEq L
V7o Ko ST RO B0
pe—’

Buipon psaiseN

U.S. Patent

Apr. 26,2016 Sheet 12 of 22

Nested Coding

US 9,323,615 B2

370

Receive A Block Of Data Chunks

N 312

i

Generate Word-Check Chunks Using The
Data Chunks

o 314

i

Generate Split Code-Check Chunks For
Rows Of The Block Of Data

N~ 316

i

Store The Data Chunks, Code-Check
Chunks, And Word-Check Chunks

N 38

FIG. 3K

US 9,323,615 B2

Sheet 13 of 22

Apr. 26,2016

U.S. Patent

. BZ0V 20V
VP Ol __—em TR
o I s — 0
e P P\
\\\\ -~ \ciww: W oBrLLPLLN |
L Ly oeomeq | 4 aDIAB(] Nmm
\\\ \\ \ abeios \ abeioig mmw L 18A87
/! Luowy 77 \ eopy |
;o yory | 1O%Y Nl i B LA MM 7 |9A87
m e e
EEEEEEEEE T i
Vo \uoer | Pna LN g | ey,
iiiiiiiiiiiiiii Y = e o e e T e B o e
BBN ! /w J2jU33 \x\\
UDZV - | LORNGIASIT b b ee e edenreneon.
ooy Henlahhisly b Veoer aomnmﬁwwmm P Ay ¥ [SABT
SNPOW JBMOd | | . '0Z¥ BINPOW J8M0- P A ,
| ' = T e PTOveoy
T oo cocoaa mnsnn wonoon e o A8 e
7 i
iiiiiiiiiiiiiiiiiiiiiiiiiiiii \Rlial!i-llllliul.llululiinliulllllil.i-lllliuli-lll
/ x.\mf G [9A8T
w%ww\ﬁ W 1BMOd e 8OV E0Y
48 ~
A 4 .
~ P k8007 D0V

US 9,323,615 B2

Sheet 14 of 22

Apr. 26,2016

U.S. Patent

ay 'Ol 2204207
o P ol Ek.au!n&!ggi -
-7 omTZEIISN
Pt N Xm\ UphLyLL \/ mﬁw,i@wm
b 7 A “ 4
: (o \, | 8918 1y | eommeq | M S0IAS(] Mmmw
N\w yLL Pl sbesng N sBeioig W abzioig mm TN
LY ' Y i S mm@
zzzzzzzzzzzzzzz A S S E—— e el IR
]
M / uoPY. Wi\\ soey [V | spoey Em%ww 11 7 jone
- MAG e i e
EEEEEEEE:}EEEEEML EEEEEEEEE _EEIJMEEJ\!‘QEEU\!‘EIM‘ EEEEEE Y I...............Nwl e e e e
\\\\m\m uoCY ong | yx.w, U B 416 acov'eoy o |
a0Z0y mw@mw sng | y\eoer. | sng L7 crener
O N~ T W 7o)
iiiiiiiiiiiiiiiii S N celb ot SN S
B3 V4
1oy ff “oiua) ,U%WWMW\
{DNW\.I(ﬁOmMSQEwwmQ ,,,,,,,,,,,,,,,,,, CQﬂBQﬁwwmm e ‘ww mm,}@a“
A % BOZY . 7 m
8NP J8MOd] N ‘ozy | BIPON MO < “pzov'zow
m ~ T oo epnnens wocene S&m) nontors soroee aooenn 6o -
G j9AeT]
oLy
vy 1Bl IBMOd
w__ G00¥ 007

US 9,323,615 B2

Sheet 15 of 22

Apr. 26,2016

U.S. Patent

e o
P oo . Pl s
- T Zov'zor “ _ y
-~ gﬁw.w: mﬁrwi\xw e cﬁwwi mﬁww:
4
a0IAS(] aoine(|y 7 D0IAD(C B0IAB(]
afeiois abeiois w \\ sbeioig sbeioig
B e S LP&EEE&EEE&MEE&T m M
| | e0p
WMWW? m nnnnnnnnnn wc@.ﬁm HOBM HOE M)(d.ww M
| 0122 | /
[e e L - e 7
\ o UZby /
f, EN.W.W mﬁmmOQu gggggg .% ,,,,,,,,,,,, W/ @N#\W . @QMWOOO S
\ xm Naca Pad
/iseass! " ii:!iiia.\asia&x\
k3007 00V

1Z0Y' 20y

IY Old

i%iiﬁ.

U.S. Patent

Apr. 26,2016 Sheet 16 of 22

Determing a number
of chunks in a stripe

Piace some of the chunks
in groups capable of being
raconsiructad from other

chunks within the group

i

Randomly select storage
resources equai to
the number of chunks in a

group

" Does the random selection of storage
devices aliow the sysiem to reconsiruct

the chunks in the group when

La component is undergoing maintenance? J

Yes

Move to the next group
of chunks of the file

FIG. 5A

US 9,323,615 B2

U.S. Patent Apr. 26,2016 Sheet 17 of 22 US 9,323,615 B2

¢ Memory |

- 140

114 1143 114.114¢

Fool of Storage Device

1501508/ / 150,150 N\ 1501500
SRV e y N\

; Y 4
Selected Selected Selected
Storage Storage Siorage
Devices Devices Devices

114,
1145,
114,
11458,

. Memory |-

114,

G| (W)
- 114,

1148,] el

(Memory }H4-114,1148,
14,1148,

(Hemory 1

L 114,1148,

U.S. Patent Apr. 26,2016 Sheet 18 of 22

Determine a number
of chunks in a stripe

!

Place some of the chunks in
groups capable of being
reconstructed from other
chunks within the group

Randomiy select storage
resources equal to the number
of chunks of a group

a

US 9,323,615 B2

]

i Yes

Does the randorn selsction of storage |
devices allow the system 1o reconstruct |
the chunks within the group whena |
component is undergoing maintenance? |

Move fo the next group
of chunks of the file

FIG. 6A

i random selection

Modify the

by replacing a
storage device

U.S. Patent

Apr. 26,2016

114,114a

114,114d

Sheet 19 of 22

114.114¢

FPool of Storage Device

114,114n

Remove

(Update

)

|
Add

v

| Memory |

{ Memory |

Selected Storage Devices

~114,1148,

114,145,

1141145,

. 150,150a

FIG. 6B

US 9,323,615 B2

U.S. Patent Apr. 26,2016 Sheet 20 of 22

Deaterming a number
of chunks in a stripe

FPlace some of the chunks
in groups capable of being
reconstrucied from other
chunks within the group

i

Select a consecutive number
of storage devices from an
ordered circular list equal to the
number of chunks of a group
beginning at siorage device X

US 9,323,615 B2

&

|

is undergoing maintenance?

Does the selection of storage devices
allow the system fo reconstructthe |
chunks of the group when a component |

i Yeas

Move o the next group
of chunks of the file

FIG. 7A

Increment X by 1

U.S. Patent Apr. 26, 2016 Sheet 21 of 22 US 9,323,615 B2

Selected Storage Devices

(Update)

|
Add

162
¥ o
Selected Storage Devices

U.S. Patent Apr. 26, 2016 Sheet 22 of 22 US 9,323,615 B2

(800

Receiving A File Into Non-transitory Memory ~_ 802

k4
Dividing The Received File Inio Chunks Using A Computer Processor

in Communication With The Non-transitory Memory, The Chunks . 804
Being Data-chunks And Non-data Chunks

¥

Grouping One Or More Of The Data Chunks And One Or

More Of The Non-data Chunks In A Group, One Or More ~_ 806

Chunks Of The Group Capable Of Being Reconstiructed
From Other Chunks Cf The Group

¥
Distributing The Chunks Of The Group To Storage Devices Of The
Distributed Storage System Based On A Hierarchy Of The Distributed
Storage System, The Hierarchy Comprising Maintenance Units
Having Active And Inactive States, Each Storage Device Associated
With A Maintenance Unit, The Chunks Of A Group Are Distributed
Across Multiple Maintenance Units To Maintain The Ability To
Reconstruct Chunks Of The Group When A Maintenance Unitis In
An nactive State

. 808

FIG. 8

US 9,323,615 B2

1
EFFICIENT DATA READS FROM
DISTRIBUTED STORAGE SYSTEMS

TECHNICAL FIELD

This disclosure relates to efficient data reads from distrib-
uted storage systems.

BACKGROUND

A distributed system generally includes many loosely
coupled computers, each of which typically includes a com-
puting resource (e.g., one or more processors) and/or storage
resources (e.g., memory, flash memory, and/or disks). A dis-
tributed storage system overlays a storage abstraction (e.g.,
key/value store or file system) on the storage resources of a
distributed system. In the distributed storage system, a server
process running on one computer can export that computer’s
storage resources to client processes running on other com-
puters. Remote procedure calls (RPC) may transfer data from
server processes to client processes. Alternatively, Remote
Direct Memory Access (RDMA) primitives may be used to
transfer data from server hardware to client processes.

SUMMARY

One aspect of the disclosure provides a method of distrib-
uting data in a distributed storage system. The method
includes receiving a file into non-transitory memory and
dividing the received file into chunks using a computer pro-
cessor in communication with the non-transitory memory.
The method also includes grouping one or more of the data
chunks and one or more of the non-data chunks in a group.
One or more chunks of the group are capable of being recon-
structed from other chunks of the group. The method further
includes distributing chunks of'the group to storage devices of
the distributed storage system based on a hierarchy of the
distributed storage system. The hierarchy includes mainte-
nance domains having active and inactive states. Moreover,
each storage device is associated with a maintenance domain.
The chunks of a group are distributed across multiple main-
tenance domains to maintain the ability to reconstruct chunks
of the group when a maintenance domain is in an inactive
state.

Implementations of the disclosure may include one or
more of the following features. In some implementations, the
method further includes restricting the number of chunks of a
group distributed to storage devices of any one maintenance
domain.

In some implementations, the method includes determin-
ing a distribution of the chunks of a group among the storage
devices by determining a first random selection of storage
devices that matches a number of chunks of the group and
determining if the selection of storage devices is capable of
maintaining accessibility ofthe group when one or more units
are in an inactive state. In some examples, when the first
random selection of storage devices is incapable of maintain-
ing accessibility of the group when one or more maintenance
domains are in an inactive state, the method further includes
determining a second random selection of storage devices
that match the number of chunks of the group or moditying
the first random selection of storage devices by adding or
removing one or more randomly selected storage devices.
The method may further include determining the first random
selection of storage devices using a simple sampling, a prob-
ability sampling, a stratified sampling, or a cluster sampling.

10

15

20

25

30

35

40

45

50

55

60

65

2

In some implementations, the method includes determin-
ing a distribution of the chunks of the group among the
storage devices by selecting a consecutive number of storage
devices equal to a number of chunks of the group from an
ordered circular list of the storage devices of the distributed
storage. When the selected storage devices are collectively
incapable of maintaining the accessibility of the group when
one or more maintenance domains are in an inactive state, the
method further includes selecting another consecutive num-
ber of storage devices from the ordered circular list equal to
the number of chunks of the group. The method may include
determining the ordered circular list of storage devices of the
distributed storage system. Adjacent storage devices on the
ordered circular list are associated with different maintenance
domains. In some examples, a threshold number of consecu-
tive storage devices on the ordered circular list are each asso-
ciated with different maintenance domains or are each in
different geographical locations.

In some implementations, the method includes determin-
ing the maintenance hierarchy of maintenance domains (e.g.,
using the computer processor), where the maintenance hier-
archy has maintenance levels and each maintenance level
includes one or more maintenance domains. The method also
includes mapping each maintenance domain to at least one
storage device. In some examples, each maintenance domain
includes storage devices powered by a single power distribu-
tion unit or a single power bus duct.

The method may include dividing the received file into
stripes. Each file includes an error correcting code. The error
correcting code is one of a nested code or a layered code. The
non-data chunks include code-check chunks, word-check
chunks, and code-check-word-check chunks.

Another aspect of the disclosure provides a system for
distributing data in a distributed storage system. The system
includes non-transitory memory, a computer processor, and
storage devices. The non-transitory memory receives a file.
The computer processor communicates with the non-transi-
tory memory and divides the received files into chunks. The
chunks are data-chunks and non-data chunks. The computer
processor further groups one or more of the data chunks and
one or more the non-data chunks in a group. One or more
chunks of the group are capable of being reconstructed from
other chunks of the group. The storage devices communicate
with the computer processor and the non-transitory memory.
The computer processor stores the chunks of the group on the
storage devices based on a maintenance hierarchy of the
distributed storage system. The maintenance hierarchy
includes maintenance domains having active and inactive
states. Each storage device is associated with a maintenance
domain. The computer processor distributes the chunks of a
group across multiple maintenance domains to maintain
accessibility of the group when a maintenance domain is in an
inactive state.

In some examples, the computer processor restricts a num-
ber of chunks of the group distributed to storage devices of
any one maintenance domain. The computer processor may
determine a distribution of the chunks of the group among the
storage devices by determining a first random selection of
storage devices matching a number of chunks of the group
and by determining if the selection of storage devices is
capable of maintaining accessibility of the group when one or
more maintenance domains are in an inactive state. The com-
puter processor may determine a second random selection of
storage devices matching the number of chunks of the group
when the first random selection of storage devices is inca-
pable of maintaining accessibility of the group when one or
more maintenance domains are in an inactive state.

US 9,323,615 B2

3

In some implementations, the computer processor modi-
fies the first random selection of storage devices by adding
and removing one or more randomly selected storage devices
when the first random selection of storage devices is inca-
pable of maintaining accessibility of the file when one or
more maintenance domains are in an inactive state. The com-
puter processor may determine the first random selection of
storage devices using a simple sampling, a probability sam-
pling, a stratified sampling, or a cluster sampling.

In some examples, the computer processor determines a
distribution of the chunks among the storage devices by
selecting a consecutive number of storage devices equal to a
number of chunks of the group from an ordered circular list of
the storage devices of the distributed storage system. More-
over, the computer processor may select another consecutive
number of storage devices from the ordered circular list equal
to the number of chunks of the group, when the selected
storage devices are collectively incapable of maintaining the
accessibility of the group when one or more maintenance
domains are in an inactive state.

In some implementations, the computer processor deter-
mines the ordered circular list of storage devices of the dis-
tributed storage system, where adjacent storage devices on
the ordered circular list are associated with different mainte-
nance domains. Additionally or alternatively, a threshold
number of consecutive storage devices on the ordered circular
list may each be associated with different maintenance
domains. Additionally or alternatively, a threshold number of
consecutive storage devices on the ordered circular list may
each be in different geographical locations.

In some examples, the computer processor determines a
maintenance hierarchy of maintenance domains and maps
each maintenance domain to at least one storage device. The
maintenance hierarchy has maintenance levels, with each
maintenance level including one or more maintenance
domains. Each maintenance domain may include storage
devices powered by a single power distribution unit or a
single power bus duct.

In some implementations, the computer processor divides
the received file into stripes, with each file including an error
correcting code. The error correcting code is one of a nested
code or a layered code. The non-data chunks include code-
check chunks, word-check chunks, and code-check-word-
check chunks.

The details of one or more implementations of the disclo-
sure are set forth in the accompanying drawings and the
description below. Other aspects, features, and advantages
will be apparent from the description and drawings, and from
the claims.

DESCRIPTION OF DRAWINGS

FIG. 1A is a schematic view of an exemplary distributed
storage system.

FIG. 1B is a schematic view of an exemplary distributed
storage system having a cell of memory hosts managed by a
curator.

FIG. 2 is a schematic view of an exemplary curator for a
distributed storage system.

FIG. 3A is a schematic view of an exemplary file split into
stripes.

FIG. 3B is a schematic view of an exemplary file split into
data chunks and code chunks.

FIG. 3C is a schematic view of an exemplary Reed-So-
lomon coding technique.

FIGS. 3D-3F are schematic views of exemplary layered
coding techniques.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3G is an exemplary arrangement of operations for
storing data using layered coding techniques.

FIGS. 3H-3] are schematic views of exemplary nested
coding techniques.

FIG. 3K is an exemplary arrangement of operations for
storing data using nested coding techniques.

FIGS. 4A-4C are schematic views of an exemplary main-
tenance hierarchy.

FIG. 5A is a flow chart of an exemplary arrangement of
operations for randomly selecting a group of storage
resources.

FIG. 5B is a schematic view of an exemplary random
selection of storage devices.

FIG. 6A is a flow chart of an exemplary arrangement of
operations for randomly selecting a group of storage
resources then randomly updating storage devices within the
group.

FIG. 6B is a schematic view of an exemplary random
selection of storage devices.

FIG. 7A is a flow chart of an exemplary arrangement of
operations for selecting a group of storage resources from a
circular list.

FIG. 7B is a schematic view of an exemplary selection of
storage devices from an ordered list.

FIG. 8 is a schematic view of an exemplary arrangement of
operations for distributing data in a storage system.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Storage systems include multiple layers of redundancy
where data is replicated and stored in multiple data centers.
Data centers house computer systems and their associated
components, such as telecommunications and storage sys-
tems 100 (FIGS. 1A and 1B). Data centers usually include
backup power supplies, redundant communications connec-
tions, environmental controls (to maintain a constant tem-
perature), and security devices. Data centers may be large
industrial scale operations that use a great amount of electric-
ity (e.g., as much as a small town). Data centers may be
located in different geographical locations (e.g., different
cities, different countries, and different continents). In some
examples, the data centers, or a portion thereof, require main-
tenance (e.g., due to a power outage or disconnecting a por-
tion of the storage system for replacing parts, or a system
failure, or a combination thereof). The data stored in these
data centers may be unavailable to users during the mainte-
nance period resulting in the impairment or halt of a user’s
operations. Therefore, it is desirable to provide a distributed
storage system 100 where a user is capable of retrieving
stored data or reconstructing unhealthy or lost data despite the
storage system 100 or portions thereof undergoing mainte-
nance or a system failure.

Referring to FIGS. 1A and 1B, in some implementations, a
distributed storage system 100 includes loosely coupled
memory hosts 110, 110a-% (e.g., computers or servers), each
having a computing resource 112 (e.g., one or more proces-
sors or central processing units (CPUs)) in communication
with storage resources 114 (e.g., memory, flash memory,
dynamic random access memory (DRAM), phase change
memory (PCM), and/or disks) that may be used for caching
data 312. A storage abstraction (e.g., key/value store or file
system) overlain on the storage resources 114 allows scalable
use of the storage resources 114 by one or more clients 120,
120a-n. The clients 120 may communicate with the memory
hosts 110 through a network 130 (e.g., via RPC).

US 9,323,615 B2

5

In some implementations, the distributed storage system
100 is “single-sided,” eliminating the need for any server jobs
for responding to remote procedure calls (RPC) from clients
120 to store or retrieve data 312 on their corresponding
memory hosts 110 and may rely on specialized hardware to
process remote requests 122 instead. “Single-sided” refers to
the method by which most of the request processing on the
memory hosts 110 may be done in hardware rather than by
software executed on CPUs 112 of the memory hosts 110.
Rather than having a processor 112 of a memory host 110
(e.g., a server) execute a server process 118 that exports
access of the corresponding storage resource 114 (e.g., non-
transitory memory) to client processes 128 executing on the
clients 120, the clients 120 may directly access the storage
resource 114 through a network interface controller (NIC)
116 of the memory host 110. In other words, a client process
128 executing on a client 120 may directly interface with one
or more storage resources 114 without requiring execution of
a routine of any server processes 118 executing on the com-
puting resources 112. This single-sided distributed storage
architecture offers relatively high-throughput and low
latency, since clients 120 can access the storage resources 114
without interfacing with the computing resources 112 of the
memory hosts 110. This has the effect of decoupling the
requirements for storage 114 and CPU cycles that typical
two-sided distributed storage systems 100 carry. The single-
sided distributed storage system 100 can utilize remote stor-
age resources 114 regardless of whether there are spare CPU
cycles on that memory host 110; furthermore, since single-
sided operations do not contend for server CPU 112
resources, a single-sided system can serve cache requests 122
with very predictable, low latency, even when memory hosts
110 are running at high CPU utilization. Thus, the single-
sided distributed storage system 100 allows higher utilization
of both cluster storage 114 and CPU 112 resources than
traditional two-sided systems, while delivering predictable,
low latency.

In some implementations, the distributed storage system
100 includes a storage logic portion 102, a data control por-
tion 104, and a data storage portion 106. The storage logic
portion 102 may include a transaction application program-
ming interface (API) 350 (e.g., a single-sided transactional
system client library) that is responsible for accessing the
underlying data 312, for example, via RPC or single-sided
operations. The data control portion 104 may manage alloca-
tion and access to storage resources 114 with tasks, such as
allocating storage resources 114, registering storage
resources 114 with the corresponding network interface con-
troller 116, setting up connections between the client(s) 120
and the memory hosts 110, handling errors in case of machine
failures, etc. The data storage portion 106 may include the
loosely coupled memory hosts 110, 110a-7.

The distributed storage system 100 may store data 312 in
dynamic random access memory (DRAM) 114 and serve the
data 312 from the remote hosts 110 via remote direct memory
access (RDMA)-capable network interface controllers 116. A
network interface controller 116 (also known as a network
interface card, network adapter, or LAN adapter) may be a
computer hardware component that connects a computing
resource 112 to the network 130. Both the memory hosts
110a-» and the client 120 may each have a network interface
controller 116 for network communications. A host process
118 executing on the computing processor 112 of the memory
host 110 registers a set of remote direct memory accessible
regions 115a-» of the memory 114 with the network interface
controller 116. The host process 118 may register the remote
direct memory accessible regions 115a-» of the memory 114

10

15

20

25

30

35

40

45

50

55

60

65

6

with a permission of read-only or read/write. The network
interface controller 116 of the memory host 110 creates a
client key 302 for each registered memory region 115a-n.

The single-sided operations performed by the network
interface controllers 116 may be limited to simple reads,
writes, and compare-and-swap operations, none of which
may be sophisticated enough to act as a drop-in replacement
for the software logic implemented by a traditional cache
server job to carry out cache requests and manage cache
policies. The transaction API 350 translates commands, such
as look-up or insert data commands, into sequences of primi-
tive network interface controller operations. The transaction
API 350 interfaces with the data control and data storage
portions 104, 106 of the distributed storage system 100.

The distributed storage system 100 may include a co-lo-
cated software process to register memory 114 for remote
access with the network interface controllers 116 and set up
connections with client processes 128. Once the connections
are set up, client processes 128 can access the registered
memory 114 via engines in the hardware of the network
interface controllers 116 without any involvement from soft-
ware on the local CPUs 112 of the corresponding memory
hosts 110.

Referring to FIG. 1B, in some implementations, the dis-
tributed storage system 100 includes multiple cells 200, each
cell 200 including memory hosts 110 and a curator 210 in
communication with the memory hosts 110. The curator 210
(e.g., process) may execute on a computing processor 202
(e.g., server having a non-transitory memory 204) connected
to the network 130 and manage the data storage (e.g., manage
a file system stored on the memory hosts 110), control data
placements, and/or initiate data recovery. Moreover, the cura-
tor 210 may track an existence and storage location of data
312 on the memory hosts 110. Redundant curators 210 are
possible. In some implementations, the curator(s) 210 track
the striping of data 312 across multiple memory hosts 110 and
the existence and/or location of multiple copies of a given
stripe for redundancy and/or performance. In computer data
storage, data striping is the technique of segmenting logically
sequential data 312, such as a file 310 (FIG. 2) into stripes, in
a way that accesses of sequential segments are made to dif-
ferent physical memory hosts 110 (e.g., cells 200 and/or
memory hosts 110). Striping is useful when a processing
device requests access to data 312 more quickly than a
memory host 110 can provide access. By performing segment
accesses on multiple devices, multiple segments can be
accessed concurrently. This provides more data access
throughput, which avoids causing the processor to idly wait
for data accesses. In some implementations (discussed in
more detail below), each stripe may be further divided into
groups G (e.g., including chunks), where accesses of sequen-
tial groups G are made to different physical memory hosts
110. Grouping of segments within a stripe may also be useful
when a processing device requests access to data 312 more
quickly than a memory host 110 can provide access. By
providing segment access of a group G on multiple devices,
multiple segments of a group G can be accessed concurrently.
This also provides more data access throughput, which avoids
causing the processor to idly wait for data accesses, thus
improving the performance of the system 100.

In some implementations, the transaction API 350 inter-
faces between a client 120 (e.g., with the client process 128)
and the curator 210. In some examples, the client 120 com-
municates with the curator 210 through one or more remote
procedure calls (RPC). In response to a client request 122, the
transaction API 350 may find the storage location of certain
data 312 on memory host(s) 110 and obtain a key 302 that

US 9,323,615 B2

7

allows access to the data 312. The transaction API 350 com-
municates directly with the appropriate memory hosts 110
(via the network interface controllers 116) to read or write the
data 312 (e.g., using remote direct memory access). In the
case that a memory host 110 is non-operational, or the data
312 was moved to a different memory host 110, the client
request 122 fails, prompting the client 120 to re-query the
curator 210.

Referring to FIG. 2, in some implementations, the curator
210 stores and manages file system metadata 212. The meta-
data 212 may include a file map 214 that maps files 310, ,, to
file descriptors 300, _,,. The curator 210 may examine and
modify the representation of its persistent metadata 212. The
curator 210 may use three different access patterns for the
metadata 212: read-only, file transactions, and stripe transac-
tions. For example, the metadata 212 can specify which parts
of afile 310 are stored at which data centers, where redundant
copies of data 312 are stored, which data chunks 330~D and
code chunks 330~C form codewords, and the like.

Referring to FIGS. 3A-3K, data 312 may be one or more
files 310. The curator 210 may divide each file 310 into a
collection of stripes 320a-n, with each stripe 320a-r being
encoded independently from the remaining stripes 320a-n.
Each stripe 320 may be encoded and stored on different
memory hosts 110. As shown in FIG. 3A, each stripe 320 is
divided into data-chunks 330D and non-data chunks 330»C
based on an encoding level 313, e.g., Reed-Solomon Codes
(FIG. 3B), layered codes (FIGS. 3C-3G), or nested codes
(FIGS. 3H-3K), or other hierarchical codes. The non-data
chunks 330%2C may be code chunks 330xC (e.g., for Reed
Solomon codes). In other examples, the non-data chunks
3302C may be code-check chunks 330nCC, 330nCC,_,,
word-check chunks 330»WC, 330»WC,_,,, and code-check-
word-check chunks 330nCCWC, 330nCCWC,_,, (for lay-
ered or nested coding). A data chunk 330%D is a specified
amount of data 312. In some implementations, a data chunk
330#D is a contiguous portion of data 312 from a file 310. In
other implementations, a data chunk 330%D is one or more
non-contiguous portions of data 312 from a file 310. For
example, a data chunk 330%D can be 256 bytes or other units
of data 312.

A damaged chunk 330 (e.g., data chunk 330%D or non-data
chunk 3307C) is a chunk 330 containing one or more errors.
Typically, a damaged chunk 330 is identified using an error
detecting code 313. For example, a damaged chunk 330 can
be completely erased (e.g., if the chunk 330 was stored in a
hard drive destroyed in a hurricane), or a damaged chunk 330
can have a single bit flipped. A healthy chunk 330 is a chunk
330 that is not damaged. A damaged chunk 330 can be dam-
aged intentionally, for example, where a particular memory
host 110 is shut down for maintenance. A damaged chunk
may be a missing or unavailable chunk. In that case, damaged
chunks 330 can be identified by identifying chunks 330 that
are stored at memory hosts 110 that are being shut down.

The non-data chunks 3307.C of a file 310 include the error-
correcting code chunk 313. The error-correcting code chunks
313 include a chunk 330 of data 312 based on one or more
data-chunks 330%zD. In some implementations, each code
chunk 330%C is the same specified size (e.g., 256 bytes) as the
data chunks 3302D. The code chunks 330.C are generated
using an error-correcting code 313, e.g., a Maximal Distance
Separable (MDS) code. Examples of MDS codes include
Reed-Solomon codes. Various techniques can be used to gen-
erate the code chunks 330%C. For example, an error-correct-
ing code 313 can be used that can reconstruct d data chunks
330%D from any set of unique, healthy chunks 330 (either
data chunks 330#D or code chunks 330%C).

10

15

20

25

30

35

40

45

50

55

60

65

8

A codeword is a set of data chunks 330D and code chunks
330nC based on those data chunks 330#D. If an MDS code is
used to generate a codeword containing d data chunks 330»D
and ¢ code chunks 330%C, then all of the chunks 330 (data or
code) can be reconstructed as long as any d healthy chunks
330 (data or code) are available from the codeword.

FIG. 3B shows a Reed-Solomon encoding as the error-
correcting code chunks 313. Each stripe 320 is divided into
chunks 330 stored on multiple storage resources 114. The
chunks 330 may be data chunks 330xzD, or code chunks
330nC,,, which together form a single code word. The data
chunks 330%D;. include the actual data 312; while the code
chunks 330%C,, are for parity to determine if the file 310 is
intact. The Reed-Solomon encoding allows for the loss of up
to the total number of code chunks 330~C,, where the stripe
312 may still be reconstructed from the data chunk 330zD,.
Therefore, each stripe 320a-r of a file 310 consists of multiple
data chunks 330D, and code chunks 330~C,, that the curator
210 places on multiple storage resources 114, where the
collection of data chunks 330xD, and code chunks 330»C,,
forms a single code word. In general, the curator 210 may
place each stripe 320a-% on storage resources 114 indepen-
dently of how the other stripes 320a-7 in the file 310 are
placed on storage resources 114. The Reed-Solomon Encod-
ing 313 adds redundant data 312, or parity data 312 to a file
310, so that the file 310 can later be recovered by a receiver
even when a number of errors (up to the capability of the code
being used) were introduced. Reed-Solomon Encoding 313 is
used to maintain data integrity in memory hosts 110, to recon-
struct data 312 for performance (latency), or to more quickly
drain machines.

Referring to FIGS. 3C-31, in layered coding (FIGS.
3C-3G) and nested coding (FIGS. 3H-3K) techniques, an
encoded data block 314 includes a data block 316 (having
data chunks 330%zD) and error-correcting code chunks 313
(i.e., non-data chunks 3307C) that is being stored is viewed as
forming a two dimensional RxC array. There are X code
chunks 330%C for each column C (called “code-check chunks
330.CC”) that can be used to reconstruct X or fewer damaged
chunks 330 per column C. There are Y code chunks 330.C
(called “word-check chunks 3302WC”) for the entire 2-D
array. When there are more than X damaged chunks 330 in
one or more columns C, the word-check chunks 3302 WC are
used in addition to other healthy chunks 330 to reconstruct
damaged chunks 330. Although some examples described in
this specification illustrate encoded data blocks 314 (i.e., data
blocks 316 and code chunks 330%C (i.e., non-data chunks
330%C)) as forming a two dimensional array, it is possible for
coding techniques to create encoded data blocks 314 config-
ured differently. For instance, different columns can have
different numbers of code-check chunk 330~CC, and col-
umns that contain word-check chunks 330»WC can have
different numbers of rows R than columns C that contain data
chunks 330#D and code-check chunks 330%C.

The codes 3302C can be used to store data 312 across
memory hosts 110 by allocating each column C of data
chunks 330#D to a data center. Each chunk 330 within the
column C can be allocated to a memory host 110 within a data
center. Then, if X or fewer chunks 330 are lost at a data center,
the chunks 330 can be reconstructed using only intra-data
center communication (e.g., so no other data centers have to
provide data 312 in performing reconstruction). If more than
X chunks 330 are lost in one or more data centers, then the Y
word-check chunks 330»WC are used to attempt reconstruc-
tion. Thus, inter-data center communication (which may be
more expensive, e.g., slower than intra-data center commu-

US 9,323,615 B2

9

nication) is only needed when more than X chunks 330 are
damaged within a single data center.

The codes can also be used within a single data center.
Instead of allocating different columns C to different data
centers, the encoding system 102 stores all of the columns C
at a single data center. The data chunks 330xzD and code
chunks 330.C can be stored at distinct memory hosts 110
within that data center. This is useful, for example, where
reading data 312 from memory hosts 110 during reconstruc-
tion is expensive (e.g., time consuming), so that the encoding
system 102 can read fewer chunks 330 during reconstruction
than would be needed using conventional coding techniques.
Small numbers of damaged chunks 330 can be reconstructed
by reading small numbers of other chunks 330 (code-check
chunks 330.CC and other data chunks 330%D in a column C),
and large numbers of damaged chunks 330 can be recon-
structed using the word-check chunks 330»WC when
needed. In some examples, the curator 210 groups data
chunks 330~D and certain non-data chunks 330%C in a group
G in a manner that allows the system 100 to reconstruct
missing chunks 330 from other chunks 330 of the group G.
The group G may include one or more columns C or portions
thereof.

Referring to FIGS. 3C-3G, in some implementations, a
layered coding technique shows data chunks 330%D and code
chunks 3307C forming codewords. An error-correcting code
313 is in systematic form if resulting codewords can be par-
titioned into two sets of chunks 330, one set including the data
chunks 330#D and one set including the code chunks 330%C.
A code in systematic form is Maximal Distance Separable
(MDS) if it has N code chunks 330%C and it can correct any
N damaged chunks 330. A layered code is created from two
MDS codes, e.g., Reed-Solomon codes or parity codes, in
systematic form. One code is used to create the code-check
chunks 330~CC and the other code is used to create the
word-check chunks 3302WC.

Referring to the example shown in FIGS. 3D-3F, a data
block 316 includes data chunks 330%D labeled D0-D41 that
are encoded with a layered code. In FIG. 3D, a first columns
of data chunks 330zD is shown, D0-D5. Two code-check
chunks 330»CC are shown for the columns, C0 and C1. C0
and C1 are based on D0-DS5. Thus, D0-D5 and C0-C1 form a
codeword. In FIG. 3E, an encoded data block 314 having the
data block 314 (D0-D41) and six code chunks CO0-C5 is
shown. C0-C5 are based on D0-D41. Thus, D0-D41 and
C0-C5 form a codeword.

FIG. 3F illustrates the resulting encoded data block 314
that includes the data block 314 (D0-D41) and additional
code chunks 330%C (code-check chunks 330~CC and word-
check chunks 330»WC). The i-th code-check chunk in col-
umn j is denoted Ci,j. So C0,0 and C1,0 are both code-check
chunks 330~CC for D0-D5.

Together, D0-D5 and C0,0 and C1,0 form a codeword. The
word-check chunks C0-C5 are shown in the last column to the
right. Together, D0-D41 and C0-C5 form a codeword. C0,7
and C1,7 can be generated based on C0-CS5, so that C0,7 and
(1,7 and C0-C5 form a codeword.

In the example shown in FIG. 3F, the word-check chunks
3302 WC fill a whole column C. However, layered codes can
be created with an arbitrary number of full Columns C of
word-check chunks 330»WC plus an optional partial column
of word-check chunks 330»WC. If the data chunks 330zD
and the word-check chunks 3302WC do not fill an integral
number of columns C, empty zero-valued chunks 330 can be
added to the 2D array. Those chunks 330 do not have to
actually be stored and they would never be in error.

20

30

40

45

50

55

10

In general, a layered code with X code-check chunks
330nCC,, per column C and N word-check chunks 330»WC
can reconstruct up to X damaged chunks 330 per column
while performing only intra-column C communication. If
after reconstructing those damaged chunks 330, N or fewer
damaged chunks 330 remain in the 2D array (within the data
plus word-check chunks 3302WC portion of the 2D array),
the damaged chunks 330 can be reconstructed using the word-
check chunks 330»WC and the code-check chunks 330.CC.
This is true because N or fewer damaged chunks 330 in the
data chunks 330%D plus the word-check chunks 3302 WC can
be reconstructed using only the word-check chunks 330»WC.
Then, if any code-check chunks 330~CC, are damaged, they
can be reconstructed from the data chunks 330D of their
respective column C.

Referring to FIG. 3G, in some implementations, the curator
210 distributes data 312 using a layered code. The curator 210
receives a data block 316 that includes data chunks 330nD
(step 362). For example, the data block 316 can be from a file
310 that is being stored. The data block 316 can include
m,;*n ,data chunks 330»C, m,is a number of datarows andn
is a number of data columns, and m, and n, are greater than or
equal to one. The encoded block 314 includes m*n chunks
330 that include m *n, where m is the total number of rows
R of data chunks 330xD and non-data chunks 330.C, and n is
the number of columns C of data chunks 330~D and non-data
chunks 330~C; nm and n are greater than or equal to one. The
curator 210 generates one or more columns C of word-check
chunks 3302WC using a first error-correcting code 313 in
systematic form and the data chunks 330zD (step 364). The
columns C of word-check chunks 330»WC can have different
numbers of word-check chunks 330»WC in the column C.
The data chunks 330zD and the word-check chunks
330»WC, taken together, form a codeword.

For each column C of one or more columns C of the data
chunks 330#D, the curator 210 generates one or more code-
check chunks 330,CC for the column C using a second error-
correcting code 313 in systematic form and the data chunks
330%D of the column C (step 366). The first and second
error-correcting codes 313 can be distinct. The columns C can
have different numbers of code-check chunks 330»CC. The
system 100 can also generate code-check chunks 3302CC for
the column C of word-check chunks 330»WC. The system
100 stores the data chunks 330xD, code-check chunks
330nCC, and word-check chunks 330»WC (step 368). In
some implementations, the system 100 allocates each col-
umns C and/or the code-check chunks 330~CC within a col-
umn C to a distinct group of memory host 110. In other
implementations, the system 100 stores the data chunks
330zD and the code chunks 330nC at a same group of
memory host 110, e.g., a single data center. The system 100
may group data chunks 330x#D and certain code-check
chunks 3302CC, and word-check chunks 3302WC in groups
G where an unhealthy chunk 330 can be restored from one or
more other chunks 330 of the group G. Therefore, the system
100 stores chunks 330 of a group G at different memory hosts
110.

When the system allocates a column C of chunks 330 to a
group of memory hosts 110, the code-check chunks 330.CC
can be generated at different locations. For example, the
code-check chunks 330~CC can be generated by a central
encoding system (e.g., the server 202 of FIG. 1B) that per-
forms the allocation or by the group of memory hosts 110
after receiving a column C of data chunks 330xzD. At each
group of memory hosts 110, each of the allocated data chunks
330#D, code-check chunks 3302CC, and word-check chunks
3302 WC can be stored at a distinct memory host 110.

US 9,323,615 B2

11

When the system 100 identifies a damaged data chunk
330#D at a first group of memory hosts 110, the system 100
attempts to reconstruct the damaged chunk 330 without com-
munication with other groups of memory hosts 110 (using the
code-check chunks 3302CC) of the group G of chunks 330. In
some cases, the system 100 reconstructs as many other dam-
aged data chunks 330%zD from the group G of chunks 330 at
the first group of memory hosts 110 as is possible using the
code-check chunks 3302CC and any healthy data chunks
330xD allocated to the first group of memory hosts 110 from
the group G of chunks 330. If the system 100 determines that
the damaged chunk 330 cannot be reconstructed without
communicating with other groups of memory hosts 110 that
have other groups G of chunks 330, the system identifies (e.g.,
by requesting and receiving) healthy chunks 330 from other
groups of memory hosts 110 that have other groups G of
chunks 330 so that at least m*n healthy chunks 330 are
available, where the healthy chunks 330 are data chunks
3302D, word-check chunks 3302WC, or both, and recon-
structs the damaged data chunk 330zD using the healthy
chunks 330.

Referring to FIGS. 3H-3J, in some implementations, a
nested coding technique shows data chunks 330#D and code
chunks 330#.C that form a codeword. As shown, the nested
coding technique is a two dimensional (2D) nested coding
technique, but a three dimensional (3D) nested coding tech-
nique may also be applied.

Nested coding techniques differ from layered coding tech-
niques by creating a different relationship between the code-
check chunks 330.CC and the word-check chunks 3302WC.
A 2D nested code is created from an arbitrary linear MDS
code in systematic form. Word-check chunks 3302WC that
are based on a data block 316 are partitioned into two groups,
the first group including X code chunks 330.C and the second
group including N code chunks 330~C. The encoded data
block 316 is viewed as forming an array of columns C, and X
code chunks 330%C in the first group are used to create X
column chunks 330 per column by “splitting” them into sepa-
rate components per column (“split” code-check chunks
330nCC). The N code chunks 330%C in the second group
form word-check chunks 330»WC.

For example, FIG. 3H shows a data block 314 (D0-D41)
and code chunks (C0-C7) 330xC that are based on the data
block 316 (D0-D41). The data chunks (D0-D41) 3302D and
the code chunks (C0-C7) 3302C form a codeword. The code
chunks 3307C are partitioned into a first group that includes
C0-C1 and a second group that includes C2-C7. C0-C1 are
split to form split code-check chunks 330~CC. C2-C7 are
used as word-check chunks 3302WC.

FIG. 31 shows a resulting encoded block 314 that includes
the data block 316 (D0-D41) and additional code chunks
330nC (split code-check chunks 330~CC and word-check
chunks 3302WC). To generate a split code-check chunk
330nCC corresponding to C0 for column j (denoted C0,7), CO
is generated as though all the data chunks 330xzD not in
column j have the value zero. That is, C0,j has the value that
would result from performing the operations to generate C0
using the full data block 316 but instead using only the col-
umn j, with all of the other columns zeroed out. For example,
if a generator matrix would be used to generate C0 for the data
block 314, then the generator matrix can be modified to
generate C0,j so that it has the value that would result from
using the original generator matrix and applying that original
generator matrix to the data block 316 with data chunks
330D in columns C other than column j zeroed out.

The split code-check chunks 330~CC for C1,j for each
column C are generated similarly, but using C1 instead of C0.

10

15

20

25

30

35

40

45

50

55

60

65

12

As aresult, C0is a linear combination of C0,0-C0,6 and C1 is
a linear Combination of C1,0-C1,6. That is,

CO=%,_,5C0,j; 1)

and

C1=5,_5C1,.)

The chunks 330 denoted as “?”” in FIG. 31 can be generated
in various ways, e.g., as described further below with refer-
ence to FI1G. 3J.

In the example of FIGS. 3H and 31, the resulting encoded
data block 314 includes 42 data chunks 330zD and 8 code
chunks 330.C. Referring to the original code used to create
the encoded block, the code chunks 330%C belong to one of
two groups as described above, X=2 of which are in the first
group and N=6 of which are in the second group. Whenever
there are two or fewer (X or fewer) damaged chunks 330
within one of the first seven columns, the damaged chunks
330 can be corrected using the healthy chunks 330 of the
columns C and the split code-check chunks 330~CC for the
column C. To see this, let j denote the column C including the
two or fewer damaged chunks 330 and consider the codeword
obtained by zeroing-out all the data chunks 330zD from
columns C other than j. In that codeword, C0=C0,j and
C1=C1,;. As aresult, the two or fewer damaged chunks 330 in
other columns as containing all-zero data chunks 330~D, and
by viewing the word-check chunks 3302 WC as being dam-
aged.

In the example shown in FIG. 3F, the word-check chunks
330»WC fully fill an entire column C (the column to the
right). 2D nested codes 3135 can be created with an arbitrary
number of columns C of word-check chunks 330»WC. The
columns C of word-check chunks 330»WC can have the same
number of rows R as the columns of data chunks 330»D or
different numbers of rows R, and the columns C of word-
check chunks 3307 WC can have different numbers of rows R
from each other. Columns C of word-check chunks 330»WC
can, but do not have to, have code-check chunks 330»CC, i.e.,
code-check-word-check chunks 330nCCWC. Increasing the
number of word-check chunks 3302WC improves the reli-
ability of the stored data 312 but uses more storage at memory
hosts 110. In general, for nested codes columns C include
either data chunks 330zD or word-check chunks 330»WC
and not both.

In general, a 2D nested code with X split code-check
chunks 3302CC per column C and N word-check chunks
3302WC can be used to reconstruct X damaged chunks 330
per column C (in those columns that include data chunks
3302D) while performing only intra-columns communica-
tion (which is typically, e.g., intra-data center communica-
tion). In reconstructing multiple damaged chunks 330 within
the encoded block 314, those damaged chunks 330 are typi-
cally reconstructed first because intra-column communica-
tion is less expensive than inter-column communication, but
other damaged chunks 330 may remain. If, after reconstruct-
ing damaged chunks 330 within columns, (N+X) or fewer
other chunks 330 are still damaged (because they were not
able to be reconstructed using intra-column communication),
those other damaged chunks 330 can be reconstructed using
the word-check chunks 3302WC and the split code-check
chunks 330~CC. The word-check chunks 330~ WC in the first
group (CO0 and C1 in FIG. 4B) can be determined from the
split code-check chunks 330.2CC, e.g., using the formula
Ci:Zj:O6 C 1ij, even though those word-check chunks
3302WC are not explicitly stored.

US 9,323,615 B2

13

To see this, let Z denote the number of word-check chunks
3302 WC that are damaged and let Y denote the number of
word-check chunks 3302WC in the first group that cannot be
reconstructed from their corresponding split code-check
chunks 330~CC according to the formula Ci:Zj:O6 Co0,to
split code-check chunks 330~CC being damaged. Using that
formula, X-Y word-check chunks 330»WC from the first
group can be determined, resulting in a codeword (e.g., the
one shown in FIG. 3H) with Y damaged word-check chunks
330rWC in the first group and Z damaged word-check
chunks 330»WC in the second group. Because there are at
most N+X total damaged chunks 330, there are at most N+X-
Y-Z damaged data chunks 330%D. Thus, it is possible to use
the resulting codeword to reconstruct all of the damaged
chunks 330, as it includes at most N+X-Y-Z+Y+Z=N+X
damaged chunks 330.

Referring to FIG. 3], in some implementations, a resulting
encoded block 314 includes code-check chunks 330~CC for
the word-check chunks 330»WC (i.e., code-check-word-
check chunks 330rnCCWC). Compared to the encoded block
of FIG. 31, the encoded block 314 of FIG. 3] includes the
code-check chunks C0,7 and C1,7 330~CC in place of the
locations marked with “?” in FIG. 31. This is one way to
provide for reconstructing damaged word-check chunks
330»WC without relying on inter-column communication.
The code-check chunks C0,7 and C1,7 330~CC can be gen-
erated in various ways. For example, those code-check
chunks 330.CC can be generated based on C2-C7 in the same
manner that C0,0 and C1,0 are generated based on D0-D5.
The resulting encoded block 314 of FIG. 3J (using the
example nested code) can be used to reconstruct up to eight
damaged chunks 330 after performing intra-column recon-
struction, whereas the resulting encoded block of FIG. 3E
(using the example layered code) can be used to reconstruct
up to six damaged chunks 330 after performing intra-column
reconstruction. Code-check chunks 3307.C can be added for
any number of columns that include word-check chunks
330nWC.

Referring to FIG. 3K, in some implementations, the curator
210 distributes data 312 using a nested code 3135. The system
100 receives a data block 316 (step 372). The data block 316
can include m ;*n , data chunks 330»C, m ;is a number of data
rows and n, is a number of data columns, and m; and n, are
greater than or equal to one. The encoded block 314 includes
m*n chunks 330 that include m_ *n, where m is the total
number of rows R of data chunks 330»D and non-data chunks
3302C, and n is the number of columns C of data chunks
330D and non-data chunks 330~C; in and n are greater than
or equal to one. The system 100 generates one or more col-
umns C of word-check chunks 330»WC using a first linear
error-correcting code 313 in systematic form and the data
chunks 330D (step 374). The word-check chunks 330»WC
and the data chunks 330xD of the same row R form a code-
word. For each of m, row of data chunks 330»C, the system
100 generates one or more split code-check chunks 330»CC
for the Column C (step 376). The split code-check chunks
330nCC are generated so that a linear combination of n split
code-check chunks 3302CC from different columns C forms
a first word-check chunk 330»WC of a first codeword includ-
ing the data chunks 330xzD and the m word-check chunks
330nWC. The first word-check chunk 330~»WC (and any
other word-check chunks 3302WC resulting from a linear
combination of split code-check chunks 330~CC from difter-
ent columns C) forms a codeword with the data chunks
330%D and the word-check chunks 330»WC generated in
step 374. For example, the split code-check chunks 330»CC
for each columns C can be generated using a splitting error-

35

40

45

55

14

correcting code 313 and the m, data chunks 330%zD or the
word-check chunks 3302WC, wherein the splitting error-
correcting code 313 includes a splitting generator matrix that
codes the same as a generator matrix for the first linear error-
correcting code 313 applied to the data chunks 3302D with
the data chunks 330D zeroed-out for columns C other than
the column C.

The system 100 stores the column C of data chunks 330»D
and the split code-check chunks 330~CC and the word-check
chunks 3302WC (step 378). In some implementations, the
system 100 stores all the chunks 330 at a single group of
memory hosts 110. In some other implementations, the sys-
tem 100 allocates each column C to a distinct group of
memory hosts 110. In some implementations, the system 100
groups chunks 330 capable of being reconstructed from other
chunks 330 within the group G, and allocates the chunks 330
of'the group G to distinct groups of memory hosts 110.

When the system 100 identifies one or more damaged
chunks 330, the system 100 can reconstruct the damaged
chunks 330 using the split code-check chunks 330~CC and
the word-check chunks 330»WC. Typically, the system 100
attempts to reconstruct damaged chunks 330 using the split
code-check chunks 330~2CC and other data chunks 330nd in
the same column C. If, after reconstructing damaged chunks
330 using only the split code-check chunks 330~CC, some
damaged chunks 330 remain, the system 100 uses the word-
check chunks 3302WC for reconstruction, including the
word-check chunks 3302WC that can be determined by deter-
mining a linear combination of the split code-check chunks
330.CC. In addition, if after reconstructing damaged chunks
330 using only split code-check chunks 3302CC of chunks
330 of a group G, some damaged chunks 330 remain, the
system 100 uses chunks 330 from other groups G of chunks
330 to reconstruct the damaged chunks 330.

Referring back to FIG. 2, in some implementations, file
descriptors 300, _,, stored by the curator 210 contain metadata
212, such as the file map 214, which maps the stripes 320a-»
to data chunks 32074, and non-data chunks 320xc,,, as appro-
priate, stored on the memory hosts 110. To open a file 310, a
client 120 sends a request 122 to the curator 210, which
returns a file descriptor 300. The client 120 uses the file
descriptor 300 to translate file chunk offsets to remote
memory locations 115a@-n. The file descriptor 300 may
include a client key 302 (e.g., a 32-bit key) that is unique to a
chunk 330 on a memory host 110 and is used to RDMA-read
that chunk 330. After the client 120 loads the file descriptor
300, the client 120 may access the data 312 of a file 310 via
RDMA or another data retrieval method.

The curator 210 may maintain status information for all
memory hosts 110 that are part of the cell 200. The status
information may include capacity, free space, load on the
memory host 110, latency of the memory host 110 from a
client’s point of view, and a current state. The curator 210 may
obtain this information by querying the memory hosts 110 in
the cell 200 directly and/or by querying a client 120 to gather
latency statistics from a client’s point of view. In some
examples, the curator 210 uses the memory host status infor-
mation to make rebalancing, draining, recovery decisions,
and allocation decisions.

The curator(s) 210 may allocate chunks 330 in order to
handle client requests 122 for more storage space in a file 310
and for rebalancing and recovery. The curator 210 may main-
tain a load map 216 of memory host load and liveliness. In
some implementations, the curator 210 allocates a chunk 330
by generating a list of candidate memory hosts 110 and sends
an allocate chunk request 122 to each of the candidate
memory hosts 110. If the memory host 110 is overloaded or

US 9,323,615 B2

15

has no available space, the memory host 110 can deny the
request 122. In this case, the curator 210 selects a different
memory host 110. Each curator 210 may continuously scan
its designated portion of the file namespace, examining all the
metadata 212 every minute or so. The curator 210 may use the
file scan to check the integrity of the metadata 212, determine
work that needs to be performed, and/or to generate statistics.
The file scan may operate concurrently with other operations
of'the curator 210. The scan itself may not modify the meta-
data 212, but schedules work to be done by other components
of the system 100 and computes statistics.

In some implementations, the processor 202 may group
one or more of the data chunks 330~D and one or more of the
non-data chunks 330~C in a group G. The one or more chunks
330 of the group G are capable of being reconstructed from
other chunks 330 of the group G. Therefore, when recon-
structing chunks 330 of a group G, the curator 210 reads
chunks 330 of the group G to reconstruct damaged chunks
330 within the group G. This allows more efficient recon-
struction of missing chunks 330, and the number of chunks
330 being read is reduced. Specifically, reducing the number
of chunk reads can decrease the cost of the read, since fewer
reads to hardware devices (e.g., memory hosts 114) are per-
formed, and reduce the latency of the reconstruction since
slow devices are less likely to be accessed.

Referring to FIGS. 4A-4C, the curator 210 may determine
amaintenance hierarchy 400 of the distributed storage system
100 to identify the levels (e.g., levels 1-5) at which mainte-
nance may occur without affecting a user’s access to stored
data 312. Maintenance may include power maintenance,
cooling system maintenance (FIG. 4C), networking mainte-
nance, updating or replacing parts, or other maintenance or
power outage affecting the distributed storage system 100.

The maintenance hierarchy 400 identifies levels (e.g., lev-
els 1-5) of maintenance domains 402, where each mainte-
nance domain 402 may be in an active state or an inactive
state. Each memory host 110 of the distributed storage system
100 is associated with one or more maintenance domain 402.
Moreover, the processor 202 maps the association of the
memory hosts 110 with the maintenance domains 402 and
their components 410, 420, 430, 440, 114. FIG. 4A shows a
strict hierarchy 400a where each component 410, 420, 430,
440, 114, depends on one other component 410, 420, 430,
440, 114, while FIG. 4B shows a non-strict hierarchy 4005
where one component 410, 420, 430, 440, 114 has more than
one input feed. In some examples, the processor 202 stores
the maintenance hierarchy 400 on the non-transitory memory
204 of the processor 202. For example, the storage resource
114a is mapped to a rack 440a, which is mapped to a bus duct
430a, which in turn is mapped to a power module distribution
center 420a, which in turn is mapped to a power plant 410a.
The processor 202 determines, based on the mappings of the
components 410, 420, 430, 440, 114, what memory hosts 110
are inactive when a component 410, 420, 430, 440, 114 is
undergoing maintenance. Once the system 100 maps the
maintenance domains 402 to the storage resources 114, the
system 100 determines a highest level (e.g., levels 1-5) at
which maintenance can be performed while maintaining data
availability.

A maintenance domain 402 includes a component 410,
420, 430, 440, 114 undergoing maintenance and any compo-
nents depending from that component 410, 420, 430, 440,
114. Therefore, when one component 410, 420, 430,440, 114
is undergoing maintenance that component 410, 420, 430,
440, 114 is inactive and any component 410, 420, 430, 440,
114 in the maintenance domain 402 of the component 410,
420,430,440, 114 is also inactive. As shown in FIG. 4A, level

10

15

20

25

30

35

40

45

55

60

65

16

1 components may include the storage resources 114a-u;
level 2 components may include racks 440a-7; level 3 com-
ponents may include bus ducts 430a-r; level 4 components
may include power module distribution centers 420a-420x;
and level 5 components may be the power plants 410 provid-
ing power to levels 1 to 4 components. Other component
distribution may also be available. When a memory host 110a
is undergoing maintenance, a level 1 maintenance domain
402a includes the memory host 110 and that storage device
114 is inactive. When a rack 440q is undergoing maintenance,
a level 2 maintenance domain 4024 that includes the rack
440a and memory hosts 110 depending from the rack 440a
are in an inactive state. When a bus duct 4304 is undergoing
maintenance, a level 3 maintenance domain 402¢ that
includes the bus duct 430a and any components in levels 1
and 2 that depend from the bus duct 430¢ are in an inactive
state. When a power module distribution center 420a is under-
going maintenance, a level 4 maintenance domain 4024 that
includes the power module distribution center 420a and any
components in levels 1 to 3 depending from the power module
distribution center 420q are in an inactive state. Finally, when
the power plant 410 is undergoing maintenance, a level 5
maintenance domain 402¢ including any power module dis-
tribution centers 420, bus ducts 430, racks 440, and memory
hosts 110 depending on the power plant 410 are inactive, and
therefore a user cannot access data 312 located within the
level 1 maintenance domain 4024.

In some examples, as shown in FIG. 4B, a non-strict hier-
archy 4005 component 410, 420, 430, 440, 114 has dual
feeds, i.e., the component 410, 420, 430, 440, 114 depends on
two or more other components 410, 420, 430, 440, 114. For
example, a bus duct 430z may have a feed from two power
modules 420; and/or a rack 440 may have a dual feed from
two bus ducts 430. As shown, a first maintenance domain
402¢ may include two racks 440a and 4407, where the second
rack 440z includes two feeds from two bus ducts 4304, 4307.
Therefore, the second rack 440 is part of two maintenance
domains 402ca and 402¢b. Therefore, the higher levels of the
maintenance hierarchy 400 are maintained without causing
the loss of the lower levels of the maintenance hierarchy 400.
This causes a redundancy in the system 100, which allows for
data accessibility. In particular, the power module distribu-
tion center 420 may be maintained without losing any of the
bus ducts 430 depending from it. In some examples, the racks
440 include a dual-powered rack 440 that allows the mainte-
nance of the bus duct 430 without losing power to the dual-
powered racks 440 depending from it. In some examples,
maintenance domains 402 that are maintained without caus-
ing outages are ignored when distributing chunks 330 to
allow for maintenance; however, the ignored maintenance
domains 402 may be included when distributing the chunks
330 since an unplanned outage may still cause the loss of
chunks 330.

In some examples, as shown in FIG. 4C, the maintenance
hierarchy 400 is a cooling hierarchy 400c¢ (or a combination
of a power hierarchy 400a, 4005) and a cooling hierarchy
400c¢. The cooling hierarchy 400¢ maps a cooling device 442
to the racks 440 that it is cooling. As shown, a cooling device
442 may cool one or more racks 440. The processor 202 stores
the association of the memory hosts 110 with the cooling
maintenance domains 402/ In some implementations, the
processor 202 considers all possible combinations of main-
tenance that might occur within the storage system 100 to
determine a hierarchy 400 or a combination of hierarchies
400a, 40056, 400c.

Therefore, when a component 410, 420, 430, 440, 114 in
the storage system 100 is being maintained that component

US 9,323,615 B2

17

410, 420, 430, 440, 114 and any components 410, 420, 430,
440, 114 that are mapped to or depending from that compo-
nent 410, 420, 430, 440, 114 are in an inactive state. A com-
ponent 410, 420, 430, 440, 114 in an inactive state is inacces-
sible by a user, while a component 410, 420, 430,440,114 in
an active state is accessible by a user allowing a user to access
data 312 stored on that component 410, 420, 430, 440, 114 or
on a memory host 110 mapped to that component 410, 420,
430, 440, 114. As previously mentioned, during the inactive
state, a user is incapable of accessing the memory hosts 110
associated with the maintenance domains 402 undergoing
maintenance; and therefore, the user is incapable of accessing
the files 310 (i.e., chunks 330, which include stripe replicas
330n,, data chunks 330»2D,, and code chunks 330%C,).

In some implementations, the processor 202 restricts a
number of chunks 330 within a group G that are distributed to
memory hosts 110 of any one maintenance domain 402, e.g.,
based on the mapping of the components 410, 420, 430, 440,
114. Therefore, if a level 1 maintenance domain 402 is inac-
tive, the processor 202 maintains accessibility (i.e., the
unhealthy chunks 330 can be reconstructed) to the group G
although some chunks 330 may be inaccessible. In some
examples, for each group G of chunks 330, the processor 202
determines a maximum number of chunks 330 that are placed
within any memory host 110 within a single maintenance
domain 402, so that if a maintenance domain 402 associated
with the memory host 110 storing chunks 330 for a file 310 is
undergoing maintenance, the processor 202 may still retrieve
the chunks 330 within the group G. The maximum number of
chunks 330 ensures that the processor 202 is capable of recon-
structing the number of chunks 330 of the group G although
some chunks 330 may be unavailable. In some examples, the
maximum number of chunks 330 of a group G is set to a lower
threshold to accommodate for any system failures, while still
being capable of reconstructing the group G of chunks 330.
When the processor 202 places chunks 330 on the memory
hosts 110, the processor 202 ensures that within a group G of
chunks 330 of a stripe 320, no more than the maximum
number of chunks 330 are inactive when a single maintenance
domain 402 undergoes maintenance.

Referring to FIGS. 5A-7B, in some implementations, the
processor 202 determines a distribution of the chunks 330 of
a group G among the memory hosts 110. In some examples,
the processor 202 makes a first random selection 150 of
memory hosts 110 from an available pool of storage devices
140 to store the chunks 330 of a group G. The processor 202
selects anumber of memory hosts 110 (e.g., selected memory
host 110S) equal to the number of chunks 330 in the group G.
Next, the processor 202 determines if the selection 150 of
selected memory hosts 110S is capable of maintaining acces-
sibility of the group G (i.e., the chunks 330 of the group G are
available) when one or more (or a threshold number of) main-
tenance domains 402 are in an inactive state. The random
selection 150 has the goal of allowing reconstruction of the
group G if maintenance occurs on one of the maintenance
components 410, 420, 430, 440, 114.

Referring to FIGS. 5A and 5B, in some examples, when the
processor 202 determines that the first random selection 1504
of selected memory hosts 1108 is incapable of maintaining
accessibility of the group G when one or more (or a threshold
number of) maintenance domains 402 are in an inactive state,
the processor 202 determines a second random selection 1505
of selected memory hosts 110S that matches the number of
chunks 330 of the group G. Then, the processor 202 deter-
mines if the second random selection 1505 of selected
memory hosts 1108 is capable of maintaining accessibility of
the group G when one or more (or a threshold number of)

10

15

20

25

30

35

40

45

50

55

60

65

18

maintenance domains 402 are in an inactive state. If the
processor 202 determines that the second random selection
15054 is incapable of maintaining accessibility of the group G
when one or more (or a threshold number of) maintenance
domains 402 are in an inactive state, the processor 202 con-
tinues to make random selections 1507 of selected memory
hosts 110S until the processor 202 identifies a random selec-
tion 1507 of selected memory hosts 110S that is capable of
maintaining accessibility of the group G.

Referring to FIGS. 6A and 6B, in some implementations,
when the processor 202 determines that the first random 150a
selection of selected memory hosts 110S is incapable of
maintaining accessibility of the group G when one or more (or
a threshold number of) maintenance domains 402 are in an
inactive state, the processor 202 modifies the first random
selection 150q of selected memory hosts 110S by adding one
ormore randomly selected memory hosts 110S and removing
a corresponding number of different memory hosts 110S. The
processor 202 then determines if the updated first random
selection 150q is capable of maintaining accessibility of the
group G when one or more (or a threshold number of) main-
tenance domains 402 are in an inactive state. If the processor
202 determines that updated first random selection 150a is
incapable of maintaining accessibility of the group G when
one or more (or a threshold number of) maintenance domains
402 are in an inactive state, the processor 202 updates the
selection 150q of selected memory hosts 110S by adding and
removing one or more randomly selected memory host 110S.
The processor 202 continues to update the random selection
150a of memory hosts 110 until the processor 202 determines
that the selected memory hosts 1108 are capable of maintain-
ing accessibility of the group G of chunks 330 during main-
tenance of the distributed storage system 100. Once the pro-
cessor 202 makes that determination, the processor 202
moves to the next stripe 320 (or file 310) to determine a
distribution of the next stripe 320. In some implementations,
the processor 202 determines the random selection 150 of
selected memory hosts 110S by using a probability sampling,
a simple sampling, a stratified sampling, a cluster sampling,
or a combination therefrom.

Referring to FIGS. 7A and 7B, in some implementations,
the processor 202 determines a number of chunks 330 in a
group G of chunks 330. The processor 202 then selects a
selected list 162 having a consecutive number of memory
hosts 110a-7 equal to a number of chunks 330 of the file 310
from an ordered circular list 160 of memory hosts 110 of the
distributed storage system 100, the ordered circular list 160
beginning at a first memory host 110a. The list 160 may be
stored on the non-transitory memory 204 of the processor
202. The processor 202 then determines if the selected
memory hosts 110a-» from the selected list 162 are collec-
tively incapable of maintaining accessibility of the group G of
chunks 330 when one or more (or a threshold number of)
maintenance domains 402 are in an inactive state. If the
processor 202 determines that the selected memory hosts
110a-n are collectively incapable of maintaining the accessi-
bility of the group G of chunks 330 when one or more (or a
threshold number of) maintenance domains 402 are in an
inactive state, the processor 202 selects another selected list
162 having a consecutive number of memory hosts 110a-»
from the ordered circular list 160 equal to the number of
chunks 330 of the stripe 320 or file 310. In some examples, the
processor 202 moves to a second memory host 110(zz+1) after
the first memory host 110z in the ordered circular list 160
when the processor 202 determines that memory hosts
110a-n of the selected list 162 are collectively incapable of
maintaining the accessibility of the group G of chunks 330. In

US 9,323,615 B2

19

other examples, the processor 202 moves a predetermined
number of positions down the ordered circular list 160. In
some implementations, the processor 202 determines the
ordered circular list 160 of memory hosts 110 of the storage
system 100 where adjacent memory hosts 110 or a threshold
number of consecutive memory hosts 110 on the ordered
circular list 160 are associated with different maintenance
domains 402. Additionally or alternatively, the processor 202
determines the ordered circular list 160 of memory hosts 110
of' the storage system 100 where adjacent memory hosts 110
or a threshold number of consecutive memory hosts 110 on
the ordered circular list 160 is each in different geographical
locations. In some examples, the memory hosts 110 on the
ordered circular list 160 are arranged so that different main-
tenance domains 402 cause the dispersion of data 312 sequen-
tially along the ordered list 160. For example, as shown in
FIG. 4A, the list 160 may not contain sequentially memory
hosts 110 dependent from the same bust duct 430a. Instead,
two sequential memory hosts 110 on the list 160 are from
different maintenance domains 402 to make sure that data
accessibility is maintained.

Referring to FIG. 8, in some implementations, a method
800 of distributing data 312 in a distributed storage system
100 includes receiving 802 a file 310 into non-transitory
memory 204 and dividing 804 the received file 310 into
chunks 330 using a computer processor 202 in communica-
tion with the non-transitory memory 204. The method 800
also includes grouping 806 one or more of the data chunks
330 and one or more of the non-data chunks 330 in a group G.
One or more chunks 330 of the group G are capable of being
reconstructed from other chunks 330 of the group G. The
method 800 further includes distributing 808 chunks 330 of
the group G to storage devices 114 of the distributed storage
system 100 based on a hierarchy of the distributed storage
system 100. The hierarchy includes maintenance domains
402 having active and inactive states. Moreover, each storage
device 114 is associated with a maintenance domain 402. The
chunks 330 of a group G are distributed across multiple
maintenance domains 402 to maintain the ability to recon-
struct chunks 330 of the group G when a maintenance domain
402 is in an inactive state.

In some implementations, the method 800 further includes
restricting the number of chunks 330 of a group G distributed
to storage devices 114 of any one maintenance domain 402.
The method 800 further includes determining a distribution
of'the chunks 330 of a group G among the storage devices 114
by determining a first random selection 150a of storage
devices 114 that matches a number of chunks 330 of the group
G and determining if the selection of storage devices 114 is
capable of maintaining accessibility of the group G when one
or more units 402 are in an inactive state. In some examples,
when the first random selection 150a of storage devices 114 is
incapable of maintaining accessibility of the group G when
one or more maintenance domains 402 are in an inactive state,
the method 800 further includes determining a second ran-
dom selection 15056 of storage devices 114 that match the
number of chunks 330 of the group G or modifying the first
random selection 150qa of storage devices 114 by adding or
removing one or more randomly selected storage devices
114. The method 800 may further include determining the
first random selection 150a of storage devices 114 using a
simple sampling, a probability sampling, a stratified sam-
pling, or a cluster sampling.

In some implementations, the method 800 further includes
determining a distribution of the chunks 330 of the group G
among the storage devices 114 by selecting a consecutive
number of storage devices 114 equal to a number of chunks

10

15

20

25

30

35

40

45

50

55

60

65

20

330 of the group G from an ordered circular list 160 of the
storage devices 114 of the distributed storage. When the
selected storage devices 114 are collectively incapable of
maintaining the accessibility of the group G when one or
more maintenance domains 402 are in an inactive state, the
method 800 further includes selecting another consecutive
number of storage devices 114 from the ordered circular list
160 equal to the number of chunks 330 of the group G.
Additionally or alternatively, the method 800 further includes
determining the ordered circular list 160 of storage devices
114 of the distributed storage system 100. Adjacent storage
devices 114 on the ordered circular list 160 are associated
with different maintenance domains 402. In some examples,
a threshold number of consecutive storage devices 114 on the
ordered circular list 160 are each associated with different
maintenance domains 402 or are each in different geographi-
cal locations.

In some implementations, the method 800 further includes
determining the maintenance hierarchy 400 of maintenance
domains 402 (e.g., using the computer processor 202), where
the maintenance hierarchy 400 has maintenance levels and
each maintenance level includes one or more maintenance
domains 402. The method 800 also includes mapping each
maintenance domain 402 to at least one storage device 114. In
some examples, each maintenance domain 402 includes stor-
age devices 114 powered by a single power distribution unit
420 or a single power bus duct 430.

The method 800 may further include dividing the received
file 310 into stripes 320. Each file 310 includes an error
correcting code 313. The error correcting code 313 is one of
a Reed-Solomon code, a nested code or a layered code. The
non-data chunks 330 include code-check chunks 3302CC,
word-check chunks 330»CC, and code-check-word-check
chunks 330»CCWC.

Various implementations of the systems and techniques
described here can be realized in digital electronic circuitry,
integrated circuitry, specially designed ASICs (application
specific integrated circuits), computer hardware, firmware,
software, and/or combinations thereof. These various imple-
mentations can include implementation in one or more com-
puter programs that are executable and/or interpretable on a
programmable system including at least one programmable
processor, which may be special or general purpose, coupled
to receive data and instructions from, and to transmit data and
instructions to, a storage system, at least one input device, and
at least one output device.

These computer programs (also known as programs, soft-
ware, software applications or code) include machine instruc-
tions for a programmable processor and can be implemented
in a high-level procedural and/or object-oriented program-
ming language, and/or in assembly/machine language. As
used herein, the terms “machine-readable medium” and
“computer-readable medium” refer to any computer program
product, apparatus and/or device (e.g., magnetic discs, optical
disks, memory, Programmable Logic Devices (PLDs)) used
to provide machine instructions and/or data to a program-
mable processor, including a machine-readable medium that
receives machine instructions as a machine-readable signal.
The term “machine-readable signal” refers to any signal used
to provide machine instructions and/or data to a program-
mable processor.

Implementations of the subject matter and the functional
operations described in this specification can be implemented
in digital electronic circuitry, or in computer software, firm-
ware, or hardware, including the structures disclosed in this
specification and their structural equivalents, or in combina-
tions of one or more of them. Moreover, subject matter

US 9,323,615 B2

21

described in this specification can be implemented as one or
more computer program products, i.e., one or more modules
of computer program instructions encoded on a computer
readable medium for execution by, or to control the operation
of, data processing apparatus. The computer readable
medium can be a machine-readable storage device, a
machine-readable storage substrate, amemory device, acom-
position of matter affecting a machine-readable propagated
signal, or a combination of one or more of them. The terms
“data processing apparatus”, “computing device” and “com-
puting processor” encompass all apparatus, devices, and
machines for processing data, including by way of example a
programmable processor, a computer, or multiple processors
or computers. The apparatus can include, in addition to hard-
ware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database management
system, an operating system, or a combination of one or more
of them. A propagated signal is an artificially generated sig-
nal, e.g., a machine-generated electrical, optical, or electro-
magnetic signal that is generated to encode information for
transmission to suitable receiver apparatus.

A computer program (also known as an application, pro-
gram, software, software application, script, or code) can be
written in any form of programming language, including
compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a module,
component, subroutine, or other unit suitable for use in a
computing environment. A computer program does not nec-
essarily correspond to a file in a file system. A program can be
stored in a portion of a file that holds other programs or data
(e.g., one or more scripts stored in a markup language docu-
ment), in a single file dedicated to the program in question, or
in multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable proces-
sors executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g.,an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto optical disks, or optical disks. However, a computer
need not have such devices. Moreover, a computer can be
embedded in another device, e.g., a mobile telephone, a per-
sonal digital assistant (PDA), a mobile audio player, a Global
Positioning System (GPS) receiver, to name just a few. Com-
puter readable media suitable for storing computer program
instructions and data include all forms of non-volatile
memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM,

30

40

45

55

22

EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto optical disks;
and CD ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, special
purpose logic circuitry.

To provide for interaction with a user, one or more aspects
of'the disclosure can be implemented on a computer having a
display device, e.g., a CRT (cathode ray tube), LCD (liquid
crystal display) monitor, or touch screen for displaying infor-
mation to the user and optionally a keyboard and a pointing
device, e.g., a mouse or a trackball, by which the user can
provide input to the computer. Other kinds of devices can be
used to provide interaction with a user as well; for example,
feedback provided to the user can be any form of sensory
feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any form,
including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending documents to
and receiving documents from a device that is used by the
user; for example, by sending web pages to a web browser on
auser’s client device in response to requests received from the
web browser.

One or more aspects of the disclosure can be implemented
in a computing system that includes a backend component,
e.g., as a data server, or that includes a middleware compo-
nent, e.g., an application server, or that includes a frontend
component, e.g., a client computer having a graphical user
interface or a Web browser through which a user can interact
with an implementation of the subject matter described in this
specification, or any combination of one or more such back-
end, middleware, or frontend components. The components
of the system can be interconnected by any form or medium
of digital data communication, e.g., a communication net-
work. Examples of communication networks include a local
area network (“LAN”) and a wide area network (““WAN”), an
inter-network (e.g., the Internet), and peer-to-peer networks
(e.g., ad hoc peer-to-peer networks).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some implementa-
tions, a server transmits data (e.g., an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter-
action) can be received from the client device at the server.

While this specification contains many specifics, these
should not be construed as limitations on the scope of the
disclosure or of what may be claimed, but rather as descrip-
tions of features specific to particular implementations of the
disclosure. Certain features that are described in this specifi-
cation in the context of separate implementations can also be
implemented in combination in a single implementation.
Conversely, various features that are described in the context
of a single implementation can also be implemented in mul-
tiple implementations separately or in any suitable sub-com-
bination. Moreover, although features may be described
above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed com-
bination can in some cases be excised from the combination,
and the claimed combination may be directed to a sub-com-
bination or variation of a sub-combination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order

US 9,323,615 B2

23

shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multi-tasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program com-
ponents and systems can generally be integrated together in a
single software product or packaged into multiple software
products.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. Accordingly, other implementations are
within the scope of the following claims. For example, the
actions recited in the claims can be performed in a different
order and still achieve desirable results.

What is claimed is:

1. A method of distributing data in a distributed storage
system, the method comprising:

receiving a file into non-transitory memory;

dividing the received file into chunks using a computer

processor in communication with the non-transitory
memory, the chunks being data-chunks and non-data
chunks;

grouping one or more of the data chunks and one or more

of the non-data chunks in a group, one or more of the
data chunks or one or more of the non-data chunks of the
group capable of being reconstructed from other chunks
of'the group; and

determining a distribution of the chunks of the group

among storage devices of the distributed storage system
based on a maintenance hierarchy of the distributed
storage system, the maintenance hierarchy comprising
maintenance domains having active and inactive states,
each storage device associated with a maintenance
domain, wherein the distribution comprises a random
selection of storage devices matching a number of the
chunks of'the group capable of maintaining accessibility
of'the group when one or more maintenance domains are
in the inactive state; and

distributing the chunks of the group to the storage devices

based on the determined distribution, the chunks of the
group being distributed across multiple maintenance
domains to maintain an ability to reconstruct chunks of
the group when a maintenance domain is in the inactive
state.

2. The method of claim 1, further comprising restricting a
number of chunks of the group distributed to the storage
devices of any one maintenance domain.

3. The method of claim 1, wherein when the random selec-
tion of the storage devices is incapable of maintaining acces-
sibility of the group when one or more maintenance domains
areinthe inactive state, modifying the random selection of the
storage devices by adding and/or removing one or more ran-
domly selected storage devices.

4. The method of claim 1, further comprising determining
the random selection of the storage devices using a simple
sampling, a probability sampling, a stratified sampling, or a
cluster sampling.

5. The method of claim 1, further comprising:

determining, using the computer processor, the mainte-

nance hierarchy of maintenance domains, the mainte-
nance hierarchy having maintenance levels, each main-
tenance level comprising one or more maintenance
domains; and

mapping each maintenance domain to at least one storage

device.

5

30

35

40

45

50

55

65

24

6. The method of claim 5, wherein each maintenance
domain comprises storage devices powered by a single power
distribution unit or a single power bus duct.

7. A method of distributing data in a distributed storage
system, the method comprising:

receiving a file into non-transitory memory;

dividing the received file into chunks using a computer

processor in communication with the non-transitory
memory, the chunks being data-chunks and non-data
chunks;

grouping one or more of the data chunks and one or more

of the non-data chunks in a group, one or more of the
data chunks or one or more of the non-data chunks of the
group capable of being reconstructed from other chunks
of the group;

determining a distribution of the chunks of the group

among storage devices of the distributed storage system
based on a maintenance hierarchy of the distributed
storage system by selecting a consecutive number of the
storage devices equal to a number of the chunks of the
group from an ordered circular list of the storage devices
of the distributed storage system, the maintenance hier-
archy comprising maintenance domains having active
and inactive states, each storage device associated with a
maintenance domain, the chunks of the group distrib-
uted across multiple maintenance domains to maintain
an ability to reconstruct chunks of the group when a
maintenance domain is in the inactive state, and when
the selected storage devices are collectively incapable of
maintaining the ability to reconstruct chunks of the
group when a maintenance domain is in the inactive
state, selecting another consecutive number of storage
devices from the ordered circular list equal to the num-
ber of chunks of the group; and

distributing the chunks of the group to the storage devices

of the distributed storage system based on the deter-
mined distribution.

8. The method of claim 7, further comprising determining
the ordered circular list of storage devices of the distributed
storage system, adjacent storage devices on the ordered cir-
cular list associated with different maintenance domains.

9. The method of claim 8, wherein a threshold number of
consecutive storage devices on the ordered circular list are
each associated with different maintenance domains.

10. The method of claim 8, wherein a threshold number of
consecutive storage devices on the ordered circular list are
each in different geographical locations.

11. A method of distributing data in a distributed storage
system, the method comprising:

receiving a file into non-transitory memory;

dividing the received file into stripes and each stripe into

chunks using a computer processor in communication
with the non-transitory memory, the chunks being data-
chunks and non-data chunks, each file including an error
correcting code, the error correcting code comprising
one of a nested code or a layered code, the non-data
chunks comprising code-check chunks, word-check
chunks, and code-check-word-check chunks;

grouping one or more of the data chunks and one or more

of the non-data chunks in a group, one or more of the
data chunks or one or more of the non-data chunks of the
group capable of being reconstructed from other chunks
of the group; and

distributing the chunks of the group to storage devices of

the distributed storage system based on a maintenance
hierarchy of the distributed storage system, the mainte-
nance hierarchy comprising maintenance domains hav-
ing active and inactive states, each storage device asso-
ciated with a maintenance domain, the chunks of the
group being distributed across multiple maintenance

US 9,323,615 B2

25

domains to maintain an ability to reconstruct chunks of
the group when a maintenance domain is in the inactive
state.

12. A system for distributing data in a distributed storage
system, the system comprising:

non-transitory memory receiving a file;

a computer processor in communication with the non-

transitory memory, the computer processor:

dividing the received file into chunks, the chunks being
data-chunks and non-data chunks; and

grouping one or more of the data chunks and one or more
of the non-data chunks in a group, one or more of the
data chunks or one or more of the non-data chunks of
the group capable of being reconstructed from other
chunks of the group; and

storage devices in communication with the computer pro-

cessor and the non-transitory memory, the computer

processor:

determining a distribution of the chunks of the group
among the storage devices based on a maintenance
hierarchy of the distributed storage system, the main-
tenance hierarchy comprising maintenance domains
having active and inactive states, each storage device
associated with a maintenance domain, wherein the
distribution comprises a random selection of the stor-
age devices matching a number of the chunks of the
group capable of maintaining accessibility of the
group when one or more maintenance domains are in
the inactive state; and

distributing the chunks of the group to the storage
devices based on the determined distribution, the
chunks of the group distributed across multiple main-
tenance domains to maintain accessibility of the
group when a maintenance domain is in the inactive
state.

13. The system of claim 12, wherein the computer proces-
sor restricts a number of the chunks of the group distributed to
the storage devices of any one maintenance domain.

14. The system of claim 12, wherein the computer proces-
sor modifies the random selection of the storage devices by
adding and removing one or more randomly selected storage
devices when the random selection of the storage devices is
incapable of maintaining accessibility of the file when one or
more maintenance domains are in the inactive state.

15. The system of claim 12, wherein the computer proces-
sor determines the random selection of the storage devices
using a simple sampling, a probability sampling, a stratified
sampling, or a cluster sampling.

16. The system of claim 12, wherein the computer proces-
sor:

determines the maintenance hierarchy of maintenance

domains, the maintenance hierarchy having mainte-
nance levels, each maintenance level comprising one or
more maintenance domains; and

maps each maintenance domain to at least one storage

device.

17. The system of claim 16, wherein each maintenance
domain comprises storage devices powered by a single power
distribution unit or a single power bus duct.

18. A system for distributing data in a distributed storage
system, the system comprising:

non-transitory memory receiving a file;

a computer processor in communication with the non-

transitory memory, the computer processor:

dividing the received file into chunks, the chunks being
data-chunks and non-data chunks; and

grouping one or more of the data chunks and one or more
of the non-data chunks in a group, one or more of the

10

15

20

35

40

45

50

55

60

26

data chunks or one or more of the non-data chunks of
the group capable of being reconstructed from other
chunks of the group; and

storage devices in communication with the computer pro-

cessor and the non-transitory memory, the computer

processor:

determining a distribution of the chunks among the stor-
age devices based on a maintenance hierarchy of the
distributed storage system by selecting a consecutive
number of the storage devices equal to anumber of the
chunks of'the group from an ordered circular list of the
storage devices of the distributed storage system, the
maintenance hierarchy comprising maintenance
domains having active and inactive states, each stor-
age device associated with a maintenance domain, the
chunks of the group distributed across multiple main-
tenance domains to maintain accessibility of the
group when a maintenance domain is in the inactive
state, and when the selected storage devices are col-
lectively incapable of maintaining the accessibility of
the group when one or more maintenance domains are
in the inactive state, selecting another consecutive
number of the storage devices from the ordered cir-
cular list equal to the number of the chunks of the
group; and

storing the chunks of the group on the storage devices
based on the determined distribution.

19. The system of claim 18, wherein the computer proces-
sor determines the ordered circular list of the storage devices
of'the distributed storage system, adjacent storage devices on
the ordered circular list associated with different maintenance
domains.

20. The system of claim 19, wherein a threshold number of
consecutive storage devices on the ordered circular list are
each associated with different maintenance domains.

21. The system of claim 19, wherein a threshold number of
consecutive storage devices on the ordered circular list are
each in different geographical locations.

22. A system for distributing data in a distributed storage
system, the system comprising:

non-transitory memory receiving a file;

a computer processor in communication with the non-

transitory memory, the computer processor:

divides the received file into stripes and each stripe into
chunks, the chunks being data-chunks and non-data
chunks, each file including an error correcting code,
the error correcting code comprising one of a nested
code or a layered code, the non-data chunks compris-
ing code-check chunks, word-check chunks, and
code-check-word-check chunks; and

grouping one or more of the data chunks and one or more
of the non-data chunks in a group, one or more of the
data chunks or one or more of the non-data chunks of
the group capable of being reconstructed from other
chunks of the group; and

storage devices in communication with the computer pro-

cessor and the non-transitory memory, the computer
processor storing the chunks of the group on the storage
devices based on a maintenance hierarchy of the distrib-
uted storage system, the maintenance hierarchy com-
prising maintenance domains having active and inactive
states, each storage device associated with a mainte-
nance domain, the computer processor distributing the
chunks of the group across multiple maintenance
domains to maintain accessibility of the group when a
maintenance domain is in the inactive state.

#* #* #* #* #*

